Find Eventual Safe States 找到最终的安全状态
Problem Description
In a directed graph, we start at some node and every turn, walk along a directed edge of the graph. If we reach a node that is terminal (that is, it has no outgoing directed edges), we stop.
Now, say our starting node is *eventually safe *if and only if we must eventually walk to a terminal node. More specifically, there exists a natural number K
so that for any choice of where to walk, we must have stopped at a terminal node in less than K
steps.
Which nodes are eventually safe? Return them as an array in sorted order.
The directed graph has N
nodes with labels 0, 1, ..., N-1
, where N
is the length of graph
. The graph is given in the following form: graph[i]
is a list of labels j
such that (i, j)
is a directed edge of the graph.
Example:
Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
Output: [2,4,5,6]
Here is a diagram of the above graph.
Note:
graph
will have length at most10000
.- The number of edges in the graph will not exceed
32000
. - Each
graph[i]
will be a sorted list of different integers, chosen within the range[0, graph.length - 1]
.
Algorithom
-
解题思路:
这道题给了我们一个有向图,然后定义了一种最终安全状态的结点,就是说该结点要在自然数K步内停止,所谓停止的意思,就是再没有向外的边,即没有出度,像上面例子中的结点5和6就是出度为0,因为graph[5]和graph[6]均为空。
那么我们分析题目中的例子,除了没有出度的结点5和6之外,结点2和4也是安全状态结点,为啥呢,我们发现结点2和4都只能到达结点5,而结点5本身就是安全状态点,所以2和4也就是安全状态点了,所以我们可以得出的结论是,若某结点唯一能到达的结点是安全状态结点的话,那么该结点也同样是安全状态结点。那么我们就可以从没有出度的安全状态往回推,比如结点5,往回推可以到达结点4和2,先看结点4,此时我们先回推到结点4,然后将这条边断开,那么此时结点4出度为0,则标记结点4也为安全状态结点,同理,回推到结点2,断开边,此时结点2虽然入度仍为2,但是出度为0了,标记结点2也为安全状态结点。
分析到这里,思路应该比较明朗了,由于我们需要回推边,所以需要建立逆向边,用一个集合数组来存,由于题目要求返回的结点有序,我们可以利用集合TreeSet的自动排序的特性,由于需要断开边,为了不修改输入数据,所以我们干脆再建一个顺向边得了,即跟输入数据相同。还需要一个safe数组,布尔型的,来标记哪些结点是安全状态结点。在遍历结点的时候,直接先将出度为0的安全状态结点找出来,排入一个队列queue中,方便后续的处理。后续的处理就有些类似BFS的操作了,我们循环非空queue,取出队首元素,标记safe中该结点为安全状态结点,然后遍历其逆向边的结点,即可以到达当前队首结点的所有结点,我们在正向边集合中删除对应的边,如果此时结点出度为0了,将其加入队列queue中等待下一步处理,这样while循环退出后,所有的安全状态结点都已经标记好了,我们直接遍历safe数组,将其存入结果res中即可,参见代码如下:
-
Code Implement:
class Solution { public: vector<int> eventualSafeNodes(vector<vector<int>>& graph) { vector<int> res; int n = graph.size(); vector<bool> safe(n, false); vector<set<int>> g(n, set<int>()), revg = g; queue<int> q; for (int i = 0; i < n; ++i) { if (graph[i].empty()) q.push(i); for (int j : graph[i]) { g[i].insert(j); revg[j].insert(i); } } while (!q.empty()) { auto t = q.front(); q.pop(); safe[t] = true; for (int i : revg[t]) { g[i].erase(t); if (g[i].empty()) q.push(i); } } for (int i = 0; i < n; ++i) { if (safe[i]) res.push_back(i); } return res; } };